Comprehensive Microcystins Analysis and Identification Using Innovative Sample Preparation and Novel LC/MS Techniques

Tarun Anumol, Ph.D. Director, Global Environment & Food Markets Agilent Technologies Inc.

Contact: tarun.anumol@agilent.com

October 31, 2020

Microcystins in Water Agilent NEMC 2020

1

Introduction

Cyanobacteria are naturally occurring in most lakes and rivers

In warm temperatures and presence of nutrients, they can form harmful algal blooms (HABs) and release cyanotoxins

Cyanotoxins can be classified into 3 categories:

- Cyclic peptides, including **microcystins (MCs)** and nodularins
- Alkaloids
- Lipopolysaccharides

MCs are the most commonly occurring in water and potent hepatotoxins. (100s of variations)

Harmful algae bloom affecting water supply: 400,000 in Toledo, Ohio await test results

POSTED 9:37 PM, AUGUST 3, 2014, BY CNN WIRE SERVICE

NEMC 2020

Toxic algae bloom now stretches 650 miles along Ohio river

October 31, 2020

Microcystins in Water

Microcystins Global Guidelines

Organization	Compound	Drinking Water (ug/L)
World Health Organization	LR	1.0
EU Drinking Water Directive (proposed)	LR	1.0
Canada	LR*	1.5
USEPA	total	8.0
Ohio		0.3 μg/L bottle-fed infants and preschool age children 1.6 μg/L schoolage children and adults
Oregon		0.3 μg/L age 5 and younger 1.6 μg/L age 6 and older
Minnesota		0.1 ug/L

* "maximum acceptable concentrations (MAC); protective of total microcystins"

NEMC 2020

EPA Method 544:DETERMINATION OF MICROCYSTINS AND NODULARIN IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

Microcystins in Water

General Microcystins Structure

- 7 amino acids in cyclic structure
- Most variations differ in R² & R⁴ location

Naming convention uses amino acid abbreviations for these positions

Superscript number indicates amino acid order within molecule

Microcystin	R ²	R ⁴	Formula	Neutral Mass
LR	Leucine	Arginine	$C_{49}H_{74}N_{10}O_{12}$	994.5488
Desmethyl LR	Leucine	Arginine	$C_{48}H_{72}N_{10}O_{12}$	980.5331
RR	Arginine	Arginine	$C_{49}H_{75}N_{13}O_{12}$	1037.5658
YR	Tyrosine	Arginine	$C_{52}H_{72}N_{10}O_{13}$	1044.5280
LA	Leucine	Alanine	$C_{46}H_{67}N_7O_{12}$	909.4848
LW	Leucine	Phenylalanine	$C_{54}H_{72}N_8O_{12}$	1024.5270
LF	Leucine	Tryptophan	$C_{52}H_{71}N_7O_{12}$	985.5161
HtyR	Homotyrosine	Arginine	$C_{53}H_{74}N_{10}O_{13}$	1058.5437

October 31, 2020

Microcystins in Water

NEMC 2020

Microcystin-LR Structure

 $C_{49}H_{74}N_{10}O_{12}$ Mass = 994.5488

Position	Abbreviation	Amino Acid			
R ¹	Ala ¹	Alanine			
R ²	Leu ² (L)	Leucine			
R ³	MeAsp ³	Methylaspartic acid			
R ⁴	Arg ⁴ (R)	Arginine			
R⁵	Adda ⁵	3-amino-9-methoxy-2,6,6-trimethyl-10- phenyldeca-4(E),6(E)-dienoic acid			
R ⁶	Glu ⁶	Glutamic acid			
R ⁷	Mdha ⁷	N-methyldehydroalanine			
ilent		Agile			

Optimizing Microcystin Analysis: Considerations

6	October 31, 2020	Microcystins in Water	NEMC 2020	Acilent		Agilent
	000000101,2020	whorodystins in water		Aglient		

EPA Method 544 Analysis of Microcystins & Nodularin by Offline SPE + LC/MS/MS

- Collection and preservation: 0.5 L
- TRIZMA, 2-chloroacetamide, ascorbic acid, EDTA

Add surrogate (C₂D₅-LR)

Filter; rinse bottle with 10% MeOH

- Soak filter in 80% MeOH; freeze 1 16 hours
- Rinse filter and combine with filtered water

Offline SPE to extract MC's

- Elute with 10 mL of 90% MeOH
- * Evaporate to dryness
- * Reconstitute with 1 mL of 90% MeOH

* "the laboratory is permitted to modify the evaporation technique, separation technique, LC column, mobile phase composition, LC conditions and MS and MS/MS conditions"

Sample Preparation for this study

 \sqrt{C} ollection and preservation: 0.5 L (well water + tap water)

• JRIZMA, 2-chloroacetamide, ascorbic acid, EDTA

VAdd surrogate (C_2D_5 -LR)

Filter; rinse bottle with 10% MeOH

- Soak filter in 80% MeOH; freeze 1 16 hours
- Rinse filter and combine with filtered water
- Offline SPE to extract MC's
 - Elute with 10 mL of 90% MeOH
 - *Evaporate to dryness 2-3 mL
 - *Reconstitute with 1 mL of 90% MeOH to 5.0 mL with MeOH

* "the laboratory is permitted to modify the evaporation technique, separation technique, LC column, mobile phase composition, LC conditions and MS and MS/MS conditions"

1260 Infinity II LC + Ultivo LC/MS/MS

Microcystin	Precursor ^b (m/z)	Product lon (m/z)	Collision Energy (V)
LR	995.6	135.2 213.2	80 80
Desmethyl-LR	981.5	135.2 213.2	80 80
RR	520.0	135.2 213.2	30 40
YR	1045.5	135.2 213.2	80 70
LA	910.5	135.2 213.2	70 70
LY	1002.5	135.2 213.2	80 70
LW	1025.5	135.2 213.2	80 60
LF	986.5	135.2 213.2	70 50
HtyR	1059.5	135.2 213.2	80 70

MRM Parameters^a

1260 Infinity II LC + 6470 MS/MS

^a The fragmentor and cell acceleration voltages were 150 V and 2 V, respectively, for all transitions; minor differences on Ultivo LC/MS
^b All precursors are singly charged, except RR which is doubly

charged.

Chromatography

EPA 544 Method Flexibility (Sec. 1.6): "Analytes must be adequately resolved chromatographically in order to permit the mass spectrometer to dwell on a minimum number of compounds eluting within a retention time window."

Low Calibrators (ng/mL in vial) 10-uL injections

MC-LR vs Drinking Water Guideline Levels 0.5 L SPE; reconstitute in 5 mL (100x conc)

Ion Suppression Evaluation

C₂D₅-LR surrogate in solvent blank, calibrators, and water samples

Quantitative Spike Recovery Results Tap water spikes @ 0.02 ug/L (n=4)

Offline SPE vs Online SPE

Inter-operator consistency

Reproducibility & Accuracy

CONFIDENTIAL

Online SPE Setup & Configuration

Online SPE & Direct Injection Conditions

Online SPE

Parameter	Value						
Analytical column	Agilent InfinityLab Poroshell 120 EC-C18, 3.0 × 100 mm, 2.7 μm (p/n 695975-302)						
Column temperature	45 °C						
Trapping columns	2 × PLRP-S cartridges, 2.1 × 12.5 mm (p/n 5982-1271); 6 mL screw top vials (p/n 9301-1377), screw caps (p/n 9301-1379), preslit senta (p/n 5188-2758)						
Injection volume	1,800 µL						
Draw and eject speed	1,000 μL/min; 4,000 μL/min						
Needle wash	MeOH, 5 seconds						
Mobile phases	A) 0.1 % FA + 1 mM NH ₄ F in H ₂ O B) 0.1 % FA in ACN						
Stop time	14 minutes						
Post time	3 minutes						
Flow rate	0.4 mL/min						
Gradient	Time (min) %B 0 30 4 30 12 95 14 95						

Direct Injection

Parameter	Value				
Analytical column	Agilent InfinityLab Poroshell 120 EC-C18, 3.0 × 100 mm, 2.7 μm (p/n 695975-302)				
Column temperature	45 °C				
Injection volume	10 µL				
Draw and eject speed	100 μL/min; 400 μL/min				
Needle wash	Methanol (MeOH), 5 seconds				
Mobile phases	A) 0.1 % formic acid (FA) + 1 mM ammonium fluoride (NH ₄ F) in water (H ₂ O) B) 0.1 % FA in acetonitrile (ACN)				
Stop time	10 minutes				
Post time	3 minutes				
Flow rate	0.4 mL/min				
Gradient	Time (min) %B 0 30 8 95 10 95				

Method Performance for Online SPE & Direct Injection

					4.0-
	Direct injection		Online SPE		3.2- 2.8- 12
MCs	LOD (ppt)	LOQ (ppt)	LOD (ppt)	LOQ (ppt)	2.0- 1.6-
RR	10	50	0.05	0.2	1.2- 0.8-
HtyR	50	100	0.2	1	0.4-
LR	100	500	0.5	2	×10 ³
HilR	50	100	0.2	1	4.8-
LA	50	100	0.2	1	4.0- 3.6-
LF	50	100	0.2	1	3.2- stuno 0.2.4-

Agilent

NEMC 2020

Spike Recovery Experiments for Online SPE & Dir. Injection

Offline SPE vs Online SPE time-savings Assuming a batch of 20 samples

Online Extraction

Analysis done in less than half the time!

Suspect peaks can show up on LC/MS/MS that can be misidentified MC-YR identification in lake water sample

🔆 Agilent

Calibration Curves for Quantification by LC-Q/TOF $0.1-25\ \mu g/L$

Is it a Microcystin? Fragmentation – m/z 135

- There are actually two product ions at m/z 135 that are formed in microcystins from the Adda⁵ group
- The presence in the lake sample indicates this is an unknown microcystin

HN

HÓÈÒ

0

 $135.1168 = C_{10}H_{15}^{+}$

Microcystins in Water

Agilent

NEMC 2020

Is it a Microcystin?

Fragmentation – m/z 213

 Glu^6 + Mdha⁷ = C₉H₁₃N₂O₄⁺ m/z = 213.0870 vs 213.0862

 m/z 213.0870 corresponds to the sequence Glu⁶ + Mdha⁷, as shown in the spectrum for YR (top)

• This ion is absent in the unknown spectra in lake

The Unknown is NOT MC-YR

24	October 31, 2020	Microcystins in Water	NEMC 2020	Agilent		Agilent

What else is different in the Unknown Spectra? Fragment at m/z 199

- Desmethylation of Mdha⁷ would result in a loss of CH₂ (-14.0157), producing an ion at m/z 199.0713
- The lake spectrum is consistent with a desmethylated microcystin from Mdha⁷, and the compound is not YR

What is generating such fragments from 1045.5 m/z?

How can a methyl group be added elsewhere to a MC-YR like backbone?

Amino Acid substitutions at the R2 & R4 positions result in most MC analogues

Microcystin	R ²	R ⁴	Formula	Neutral Mass
LR	Leucine	Arginine	$C_{49}H_{74}N_{10}O_{12}$	994.5488
Desmethyl LR	Leucine	Arginine	$C_{48}H_{72}N_{10}O_{12}$	980.5331
RR	Arginine	Arginine	C ₄₉ H ₇₅ N ₁₃ O ₁₂	1037.5658
YR	Tyrosine	Arginine	$C_{52}H_{72}N_{10}O_{13}$	1044.5280
LA	Leucine	Alanine	C ₄₆ H ₆₇ N ₇ O ₁₂	909.4848
LW	Leucine	Phenylalanine	$C_{54}H_{72}N_8O_{12}$	1024.5270
LF	Leucine	Tryptophan	C ₅₂ H ₇₁ N ₇ O ₁₂	985.5161
HtyR	Homotyrosine	Arginine	$C_{53}H_{74}N_{10}O_{13}$	1058.5437
Agilent				*

Is the unknown demethylated HtyR?

Look for fragments that include R2 (Hty)

Compare ions from authentic standard of HtyR (top) to the unknown (bottom), to show the presence of Hty in the R² position and desmethylation in R⁷ position

- Fragment Ion : $R^7 Ala^1 R^2 MeAsp^3 Arq^4$
 - HtyR (from 1059.5 m/z)
 - R^7 = Mdha; R^2 = Hty
 - Calc m/z : 617.3042
 - Measured: 617.3059 (2.8 ppm mass error)

dm-HtyR (1045.5 m/z)

- Calc m/z : 603.2885
- Measured: 603.2884 (0.2 ppm mass error)

Is the unknown demethylated HtyR? Look for fragments that include R2 (Hty)

No Demethylation occurring in R³ and no contribution of R⁷ so fragments should be same

Additional unknowns detected – Lake A

- A library of 100+ microcystins was built
- MS domain confirmation
- Auto searching possible using isotope pattern

🔆 Agilent

Conclusions

LC/TQ

- Excellent tool for the targeted analysis of microcystins when analytical standards are available
- Quantification down to sub µg/L easily possible

Online SPE

• Reduces labor and significantly increases throughput with ng/L quantification possible.

LC/QTOF

- Complimentary tool that can confirm suspect compounds using accurate mass of the molecular ion adducts, as well as MS/MS fragments.
- Quantification of all MCs upto 0.1 µg/L possible

NEMC 2020

Databases

• Can be compiled to include the chemical formula for additional microcystins based on reported analogues in the literature

Acknowledgements & Resources

Ralph Hindle

Kathy Hunt

Chang Jiang

Identification of Unknown **Microcystins in Alberta Lake Water**

Application Note

Detection, characterization, and tentative identification of very low levels of unknown microcystins in lake water are possible in the absence of analytical standards using a combination of triple quadrupole LC/MS and LC/Q-TOF analysis and a Personal Compound Database (PCD) compiled from the Word Health Organization (WHO) list of microcystins.

Contact: tarun.anumol@agilent.com

October 31, 2020

Microcystins

Microcystins in Water

NEMC 2020